177 research outputs found

    Sediments from Lago di Mezzano, central Italy: a record of Lateglacial/Holocene climatic variations and anthropogenic impact

    Get PDF
    Microscopic, geochemical and pollen analysis of sediment samples of a Lateglacial/Horocene profile from Lago di Mezzano, a maar lake in central Italy, reveals evidence of significant climatic and human-induced environmental changes. Time control is provided by a combination of varve chronology and radiocarbon dating. The well-known Lateglacial climatic variations, a warmer interstadial and the Younger Dryas cold phase are clearly represented in all the parameters. During the interval between 9200 and 5600 cal. BP of the Holocene climatic optimum, annually laminated, organic-rich diatom gyttja was deposited. Two periods of diminished total organic carbon are identified within this interval. The first one (P1) ranges from 8200 to 7800 cal. BP while the second (P2) is centred around 6500 cal. BP. During P1, a predominance of diatoms (Stephanodiscus parvus and S. minutulus) over other algae (represented by the total organic carbon content) is observed. The timing of this period coincides with the early- to mid-Holocene climatic transition, reported from ice cores and lake sediments (Stager and Mayewski, 1997). P2 is characterized by a decrease in all biogenic parameters including biogenic opal, organic carbon as well as arboreal pollen. From 5000 cal. BP to date, the sediment pattern changes coincide with the mid-Holocene climatic deterioration. In addition to these natural variations, human impact has been recorded and recognized from sedimentological features such as turbidites and charcoal, as well as from reduced arboreal pollen content. Two Middle Bronze Age (3700 cal. BP and 3300 cal. BP), Etruscan/early Roman (2500 cal. BP), Longobardic (AD 900) and 'modern settlements' (since no 1700) have been distinguished on the basis of these data

    Innovation und Zukunft der Steine- und Erden-Industrie in Mitteleuropa

    Get PDF
    repor

    Evidence for geomagnetic excursions recorded in Brunhes and Matuyama Chron lavas from the trans‐Mexican volcanic belt

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/99072/1/arar_methodology.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/99072/2/jgrb50214.pd

    Noninvasive estimation of tumour viability in a xenograft model of human neuroblastoma with proton magnetic resonance spectroscopy (1H MRS)

    Get PDF
    The aim of the study was to evaluate proton magnetic resonance spectroscopy (1H MRS) for noninvasive biological characterisation of neuroblastoma xenografts in vivo. For designing the experiments, human neuroblastoma xenografts growing subcutaneously in nude rats were analysed in vivo with 1H MRS and magnetic resonance imaging at 4.7 T. The effects of spontaneous tumour growth and antiangiogenesis treatment, respectively, on spectral characteristics were evaluated. The spectroscopic findings were compared to tumour morphology, proliferation and viable tumour tissue fraction. The results showed that signals from choline (Cho)-containing compounds and mobile lipids (MLs) dominated the spectra. The individual ML/Cho ratios for both treated and untreated tumours were positively correlated with tumour volume (P<0.05). There was an inverse correlation between the ML/Cho ratio and the viable tumour fraction (r=−0.86, P<0.001). Higher ML/Cho ratios concomitant with pronounced histological changes were seen in spectra from tumours treated with the antiangiogenic drug TNP-470, compared to untreated control tumours (P<0.05). In conclusion, the ML/Cho ratio obtained in vivo by 1H MRS enabled accurate assessment of the viable tumour fraction in a human neuroblastoma xenograft model. 1H MRS also revealed early metabolic effects of antiangiogenesis treatment. 1H MRS could prove useful as a tool to monitor experimental therapy in preclinical models of neuroblastoma, and possibly also in children

    Breast imaging technology: Imaging biochemistry - applications to breast cancer

    Get PDF
    The use of magnetic resonance spectroscopy (MRS) to investigate breast tumour biochemistry in vivo is reviewed. To this end, results obtained both from patients in vivo and from tumour extracts and model systems are discussed. An association has been observed between transformation and an increase in phosphomonoesters (PMEs) detected in the (31)P MRS spectrum, as well as an increase in choline-containing metabolites detected in the (1)H spectrum. A decrease in PME content after treatment is associated with response to treatment as assessed by tumour volume. Experiments in model systems aimed at understanding the underlying biochemical processes are presented, as well as data indicating the usefulness of MRS in monitoring the uptake and metabolism of some chemotherapeutic agents

    Use of neoadjuvant chemotherapy prior to radical hysterectomy in cervical cancer: monitoring tumour shrinkage and molecular profile on magnetic resonance and assessment of 3-year outcome

    Get PDF
    Use of neoadjuvant chemotherapy prior to radical hysterectomy in cervical cancer: monitoring tumour shrinkage and molecular profile on magnetic resonance and assessment of 3-year outcome The objective of this study is to assess tumour response to neoadjuvant chemotherapy prior to radical hysterectomy in cervical cancer using magnetic resonance (MR) to monitor tumour volume and changes in molecular profile and to compare the survival to that of a control group. Eligibility included Stage Ib-IIb previously untreated cervical tumours >10 cm(3). Neoadjuvant chemotherapy in 22 patients ( methotrexate 300 mg m(-2) (with folinic acid rescue), bleomycin 30 mg m(-2), cisplatin 60 mg m(-2)) was repeated twice weekly for three courses and followed by radical hysterectomy. Post-operative radiotherapy was given in 14 cases. A total of 23 patients treated either with radical surgery or chemoradiotherapy over the same time period comprised the nonrandomised control group. MR scans before and after neoadjuvant chemotherapy and in the control group documented tumour volume on imaging and metabolites on in vivo spectroscopy. Changes were compared using a paired t-test. Survival was calculated using the Kaplan-Meier method. There were no significant differences between the neoadjuvant chemotherapy and control groups in age ( mean, s.d. 43.3 +/- 10, 44.7 +/- 8.5 years, respectively, P = 0.63) or tumour volume (medians, quartiles 35.8, 17.8, 57.7 cm(3) vs 23.0, 15.0, 37.0 cm(3), respectively, P = 0.068). The reduction in tumour volume post-chemotherapy (median, quartiles 7.5, 3.0, 19.0 cm(3)) was significant ( P = 0.002). The reduction in - CH2 triglyceride approached significance ( P = 0.05), but other metabolites were unchanged. The 3-year survival in the chemotherapy group (49.1%) was not significantly different from the control group (46%, P = 0.94). There is a significant reduction in tumour volume and - CH2 triglyceride levels after neoadjuvant chemotherapy, but there is no survival advantage

    Detection of polyol accumulation in a new ovarian carcinoma cell line, CABA I: a1H NMR study

    Get PDF
    Ovarian carcinomas represent a major form of gynaecological malignancies, whose treatment consists mainly of surgery and chemotherapy. Besides the difficulty of prognosis, therapy of ovarian carcinomas has reached scarce improvement, as a consequence of lack of efficacy and development of drug-resistance. The need of different biochemical and functional parameters has grown, in order to obtain a larger view on processes of biological and clinical significance. In this paper we report novel metabolic features detected in a series of different human ovary carcinoma lines, by 1H NMR spectroscopy of intact cells and their extracts. Most importantly, a new ovarian adenocarcinoma line CABA I, showed strong signals in the spectral region between 3.5 and 4.0 p.p.m., assigned for the first time to the polyol sorbitol (39±11 nmol/106 cells). 13C NMR analyses of these cells incubated with [1-13C]-D-glucose demonstrated labelled-sorbitol formation. The other ovarian carcinoma cell lines (OVCAR-3, IGROV 1, SK-OV-3 and OVCA432), showed, in the same spectral region, intense resonances from other metabolites: glutathione (up to 30 nmol/106 cells) and myo-inositol (up to 50 nmol/106 cells). Biochemical and biological functions are suggested for these compounds in human ovarian carcinoma cells, especially in relation to their possible role in cell detoxification mechanisms during tumour progression

    Metabolic profiling of human brain metastases using in vivo proton MR spectroscopy at 3T

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metastases to the central nervous system from different primary cancers are an oncologic challenge as the overall prognosis for these patients is generally poor. The incidence of brain metastases varies with type of primary cancer and is probably increasing due to improved therapies of extracranial metastases prolonging patient's overall survival and thereby time for brain metastases to develop. In addition, the greater access to improved neuroimaging techniques can provide earlier diagnosis. The aim of this study was to investigate the feasibility of using proton magnetic resonance spectroscopy (MRS) and multivariate analyses to characterize brain metastases originating from different primary cancers, to assess changes in spectra during radiation treatment and to correlate the spectra to clinical outcome after treatment.</p> <p>Methods</p> <p>Patients (n = 26) with brain metastases were examined using single voxel MRS at a 3T clinical MR system. Five patients were excluded due to poor spectral quality. The spectra were obtained before start (n = 21 patients), immediately after (n = 6 patients) and two months after end of treatment (n = 4 patients). Principal component analysis (PCA) and partial least square regression analysis (PLS) were applied in order to identify clustering of spectra due to origin of metastases and to relate clinical outcome (survival) of the patients to spectral data from the first MR examination.</p> <p>Results</p> <p>The PCA results indicated that brain metastases from primary lung and breast cancer were separated into two clusters, while the metastases from malignant melanomas showed no uniformity. The PLS analysis showed a significant correlation between MR spectral data and survival five months after MRS before start of treatment.</p> <p>Conclusion</p> <p>MRS determined metabolic profiles analysed by PCA and PLS might give valuable clinical information when planning and evaluating the treatment of brain metastases, and also when deciding to terminate further therapies.</p
    corecore